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Abstract-Natural convection of gases in a horizontal annulus, where the inner cylinder is heated by the 
application of a constant heat flux and the outer cylinder is isothermally cooled, is studied numerically. 
Detailed results of temperature, velocity and heat transfer are presented for a wide range of Rayleigh 
numbers extending from conduction to the convection-dominated steady flow regime, and diameter ratios 
of 1.2-10. A crescent-shaped eddy dominates for the small diameter ratio and a kidney-shaped flow pattern 
appears for the large diameter ratio as observed by previous investigators in their flow visualization studies. 
The inner wall temperature is a function of diameter ratio and Rayleigh number. An increase in Rayieigh 
number based on the same temperature difference for the inner wall boundary condition of constant heat 
flux or constant temperature increases the heat transfer rate; however, the increase is larger for the constant 
heat &IX case. At large diameter ratios (K > IO), the heat transfer rates are the same for both types of 

heating, and a single cylinder in an infmite atmosphere gives nearly the same results. 

1, INTRODUCTION 

NATURAL convection in horizontal annuli has been 
the subject of interest for the past 25 years and many 
experimental, analytical and numerical papers have 
appeared in the literature. In most of these studies, 
isothermal cylinders were considered. The annulus 
geometry has application in solar collector receiver, 
thermal storage systems and transmission cables. 

It is clearly established from the flow visualization 
study of Bishop and Carley [l] that there are two basic 
types of natural convection how between horizontal 
cylinders; the crescent-shaped eddy pattern for small 
diameter ratios and the kidney-shaped eddy pattern 
for diameter ratios greater than 3.6. This work was 
extended by Powe et al. [2] and a chart was presented 
which allowed prediction of the type of unsteady flow 
that would occur for a wide range of cylinder com- 
binations and annulus operating conditions. Grigull 
and Hauf [3] presented the results of a study similar 
to the one reported in ref. [l]. They observed three- 
dimensional Sows which were not reported by ref. [l] 
although both investigations used the same range of 
variables. The conflicting results of refs. [l, 31 and 
Liu et al. [4] are discussed by Bishop et al. [5] who 
presented detailed quantitative information con- 
cerning the characteristics of a natural convective 
oscillatory flow between horizontal isothermal cyl- 
inders, The results of a numerical investigation ob- 
tained by Powe et al. [6] predicted a counter-rotating 
cell for small diameter ratios as seen by ref. [2] but 
the predicted transition to oscillatory flow was 
somewhat different from that given by ref. [2]. In 
general, the experimentally determined transition seg- 
ments obtained by ref. [2] were confirmed by their 
numerical work [6]. Mack and Bishop [7] solved the 
equations for low Rayleigh numbers by using the first 
three terms in a power series of Rayleigh number 
based on inner radius. They predicted secondary cells 

in the top and the bottom of the annulus for very 
low Prandtl numbers which was later confirmed by 
Charrier-Mojtabi et al. 181. Mahony et al. [9] showed 
numerically the effects of variable property and dia- 
meter ratio on the heat transfer and fluid flow in the 
horizontal annulus. Kuehn and Goldstein [lo, 1 l] 
determined experimentally and numerically the heat 
transfer results up to a Rayleigh number of 105. Kuehn 
and Goldstein [ 121 also presented a correlation equa- 
tion that improved upon previously published results. 
Different numerical schemes were utilized to solve 
the problem in concentric cylinders by Crawford and 
Lemhch 1131, Projahn et af. [14], and Cho et al. [15]. 
The above-mentioned papers were confined to steady- 
state analysis of flow between horizontal isothermal 
cylinders. 

A realistic problem of heat dissipation in trans- 
mission cables is to cool the outside surface of the 
cable with a coolant such as water. The inner surface 
has a uniform heat flux and the outer surface is iso- 
thermally cooled. The heat transfer results for this 
problem were determined ex~rimentally by Van de 
Sande and Hamer [16] for Ra,_ > 2 x lo6 for both 
concentric and eccentric cylinders. Constant heat Aux 
on the inner wall was considered by Keyhani et al. 
1171 and Prasad [ 181 for the vertical annulus. The 
former reported experimental results in non-porous 
media and the latter obtained numerical results in 
porous media. Morgan [I91 presented correlation 
equations based on the experimental data of Dyer [20] 
who studied heat transfer from a cylinder heated by 
the application of a constant heat flux in an infinite 
medium. 

This paper presents the numerical results of steady, 
natural convection Sow of gases between two hori- 
zontal cylinders with the inner wall maintained at 
constant heat flux. The cylinders are long and the flow 
is assumed to have axially independent properties. 
The flow also has vertical lines of symmetry at the top 
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NOMENCLATURE 

“‘r specific heat at constant pressure C3 dimensional radial velocity 
eR unit vector in the radial direction V;, dimensional tangential velocity. 
e. unit vector in the tangential direction 
P body force 

9 
t 

acceleration due to gravity 
Greek symbols 

average heat transfer coefficient 
k thermal conductivity of the fluid 

; 
thermal diffusivity 
coefficient of volumetric expansion 

,- 
L gap width, r. - r, 

; 
vorticity 

Nn, Nusselt number, &L/Llk 
angular coordinate ; measured positive 

P pressure 
clockwise from the upper vertical line 

P!” Prandtl number, v/a 
of symmetry 

9 constant heat flux applied on the inner 
K radius ratio, roirI 

wall 5 vector potential 

Y radial coordinate P density 

R dimensionless radial coordinate, rj L 
t dimensionless temperature. 

R9:: Rayleigh number, ~g(q~~~)~~~~~~ ( T- ~~~(q~/~) 

RR Rayleigh number, ~~9(A~)~~~~~~ + stream function. 

T di~nensiona~ temperature 
A7’ temperature difference across the Subscripts 

annulus ; (T, - T,) for isothermal Q based on inner diameter 
heating, and (T,,, - T,,) for constant flux i inner wall 
heating I local quantity 

?A non-dimensional radial velocity, VkL/x L based on gap width 

0, v, non-dimensional tangential velocity, m mean value on the inner wall 
V;, L/Cc max maximum value 

V velocity vector, V = Y;eR -I- Vie,, 0 outer wall. 

and the bottom of the annulus. Comparisons are made 
with isothermal heating. Dependence of peak and 
mean temperatures on the diameter ratio is addressed. 
The flow patterns for different diameter ratios are 
discussed in detail. 

2. PROBLEM FORMULATION 

The governing equations for a steady laminar flow 
with no heat generation, negligible viscous dissi- 
pation, applying the Boussinesq approximation may 
be written as follows : 

continuity V - V = 0 (1) 

momentum p(V*V)V= -Vp+F-pVx(VxV) 
(2) 

by I/. < is the axial component of vorticity. The dimen- 
sionless quantities are 

The final equations are written as 

energy k(V*V)T= pc,,(V*V)T 

where F is the body force given by 

(3) u 2; + 2' K_ 
CR R 20 

- Raf Pr 
II 

F = (-pgcos@e,+pgsinBe,). (4) 
r_)u xv 

f A fi Y; + g2 + ; (8) 
The following equations relate velocity V to vorticity 
< and vector potential < 

i?T i”r 1 ST (7% I 2’7 
v=vxe “~~+~~~==RilR+~~:~~-‘i;tr2. 0) 

<=VXV. (5) In the above equations, u and 2’ are written in terms 

The axial component of 5 in two-dimensional flows is of $ using equations (5). 

the stream function and henceforth will be denoted The boundary conditions on the walls are evaluated 
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using no slip conditions for velocity, constant heat 
flux on the inner wall, constant temperature on the 
outer wall and no cross flow in the vertical line of 
symmetry. The angular coordinate increases in the 
clockwise direction, with 8 = 0 at the top and 0 = x 
at the bottom of the annulus. Mathematically, the 
boundary conditions may be stated as 

e = 0,x, 
aZ 
jj = 0, $ = 0, L: = 0. 

3. NUMERICAL PROCEDURE 4. RESULTS 

The vorticity transport equation and the energy 
equation were solved by the false transient alternating 
direction implicit (ADI) method, and the stream func- 
tion equation was solved by the successive over relax- 
ation (SOR) method. Such a procedure was suc- 
cessfully used by Mallinson and de Vahl Davis [21] 
and Mahony et al. [9]. The specific derivation of the 
ADI method was a variation of the one proposed by 
Samarskii and Andreyev [22]. The first and second 
derivatives in space were approximated by central 
differences and the time derivatives by a first-order 
difference. Derivatives at the boundaries were 
approximated by a three-point forward or backward 
differencing. 

A uniform r x 8 grid of 1 g x 3 I was chosen for low 
Rayleigh number conditions, and a semi-u~fo~ grid 
of 18 x 31, closely spaced near the walls and the ver- 
tical boundaries, was chosen for more severe flow 
conditions that occurred at high Rayleigh numbers. 
For high diameter ratios, a 28 x 41 mesh was used. To 
check for secondary cells, a mesh size of 28 x 51 was 
used for selected cases. The solution was found to be 
grid independent. 

The following criterion was used to check con- 
vergence at each nodal point : 

Natural convection of gases in the horizontal annu- 
lus with the inner wall maintained at constant heat 
flux and an isothermal outer wall has been studied 
numerically. The results of heat transfer and fluid 
motion have been presented using a Boussinesq 
approximation for a wide range of Rayleigh numbers 
extending from conduction up to a point where the 
flow ceases to be steady, and diameter ratios of 1.2, 
1.33, 1.5, 2.6, 5 and 10. Comparisons are made with 
the case of an isothermal inner wall for the same 
temperature difference based on mean inner wall tem- 
perature and outer wall temperature. The maximum 
inner wall temperature non-dimensionalized by the 
mean temperature has been obtained for various 
diameter ratios. The flow patterns at high Rayleigh 
numbers at which transition to unsteady or three- 
dimensional flow occurs are discussed. Thus, the 
objective of this paper is to find the structure of the 
flow and the thermal fields in the horizontal annulus 
obtained for a constant uniform heat flux boundary 
condition and their behavior with the change in dia- 
meter ratios. The numerical results for isothermal 
wall heating have been compared with experimental 
results elsewhere [9]. 

4.1. Temperature field 

(11) 

where Cp is the primary variable being tested, the sub- 
scripts ‘old’ and ‘new’ are the previous and present 
iterative values, respectively, and r a prespecified con- 
stant. This constant was set to 10e3 for the semi- 
uniform mesh and lo-“ for the uniform mesh, and 
was frequently lowered to 10e5 to maintain the energy 
balance to a specified tolerance. 

The energy balance was maintained by checking if 
the average heat transfer rates on the inner and outer 
surfaces differed by less than 2%. The constant r in 
equation (11) was made smaller if the difference was 
higher than desired. The majority of the results con- 

verged to give less than 1% energy balance, and an 
error of up to 3% was tolerated for high Ra*. For 
tc = 10, energy balance was compromised up to 5% 
and the convergence at each nodal point was only 
10m3. So, only a few results for z = 10 appear in this 
paper. The number of iterations needed for con- 
vergence was dependent upon the choice of starting 
condition. On average, the number ranged from 100 

steps to 600 steps using the computer NAS/XMO. 
Validation studies have already been performed by 

Mahony et al. [9] by generating a solution that could 
be directly compared with previously published 
results. Results were compared with the experimental 
results of Kuehn and Goldstein [lo] and several other 
numerical results and were found to be in excellent 
agreement. 

The temperature distribution across the annuius 
presented in Fig. 1 for Rar = 3 x 10’ and K = 2.6 is 
similar qualitatively to the profile obtained for iso- 
thermal inner wall heating [9] for the same Ra, and IC 
(comparisons of Rayleigh numbers for the two 
boundary conditions will be discussed later). In the 
plane of vertical symmetry, where there is no angular 
velocity, the temperature continues to decrease stowiy 

in the core along the radial direction until the outer 
boundary layer is reached where the temperature falls 
off sharply once again. At 45”, a temperature inversion 
appears in the middle of the annulus. The cold fluid 
moving upward gets recirculated to the outer core 
while slightly warming up. Such an inversion is also 
seen at other angular positions. The fluid in the bot- 



R. KUMAR 

I I I I I 

0.1 0.2 0.5 04 0.5 0.6 0.7 0.6 0.9 1.0 

z 
g- 5 

FIG. I. Non-dimensional temperature profiles for ti = 2.6 and Rar = 3 x 10’. Angular positions are tndrked 
on the profiles. 

Table I. Normalized temperature at R = 0. I 
..___._ ____-.. -.__.... 

To I 

Ru; = 1 x IO' 
Do ~.-..-~ __- .~-~ 

Raz- 5x 105 
~_ --. .-_ .-_..-. ..-.. 

zl 0" 45' 90” 135 0” 45” 90 135’ 
~._ --_ 
1.2 0.89 0.82 0.75 0.7 
1.33 0.83 0.72 0.66 0.55 
1.5 0.85 0.76 0.70 0.65 
2.6 0.80 0.65 0.57 0.52 0.75 0.54 0.47 0.38 
5.0 0.74 0.56 0.46 0.41 0.68 0.41 0.30 0.25 
--._ - .--. ~~~ ~~~-.- .--.- ..___-.---- -.... --- 

tom portion of the annulus is relatively stagnant and 
stays colder. In both cases of constant heat flux and 
isothermal heating there is a drop in temperature 
within a short distance from the inner cylinder at 
all O-locations. However, this drop in temperature is 
sharper for the uniform heat flux condition producing 
a much thinner boundary layer. Hence, the effective 
sink temperature occurs closer to the inner wall, that 
is, at about (r - ri)/<rO - ri) = 0.1 rather than 0.25 as 
in isothermal heating. Table 1 lists the percentage 
drop in tem~rature at one-tenth the annular width 
at four angular locations. As IC is increased to 5, for 
RaZ = IO”, the sink temperature at (r-ri)/ 

(T*-- pi) = 0.1 falls to 74% of the maximum tem- 

perature, and the drop in temperature is sharper 
reaching 55% at 0 = 4Y. The fluid temperature at 
(t.-ri)/(rO-r,) = 0.1 continues to decrease along B to 
41% of the maximum temperature at 135,. Thus, the 
stratification is seen to be strong in the upper part 
of the annulus at high diameter ratios and Rayleigh 
numbers. As the diameter ratio is decreased, there is 
relatively more activity in the bottom part of the annu- 
lus and hence the temperature decreases to only 70% 
of the wall value even at 135 for K = 1.2. For a 
given gap width, the Rayleigh number is increased by 
increasing the heat Rux on the inner wall. Hence. 
as the Rayleigh number increases, the tempcraturc 
gradient increases, resulting in a sharper drop in tem- 
perature occurring closer to the inner wall for the 
same diameter ratio as is evident from Table I. 

The peak and mean temperatures on the uniform 
heat flux wall are useful quantities in engineering 
applications. The maximum temperature always 
occurs at the top of the inner cylinder, as can be 
expected, for all Rayleigh numbers and diameter 
ratios (Fig. 2). The temperature decreases steadily 
along the inner wall to the bottom line of symmetry. 
For a diameter ratio of 1.2, at 0 = IgO”, the tem- 
perature decreases to approximately 40% of the 
maximum temperature. However, as the diameter ratio 
is increased, the tempe~ture profile appears to be 
much smoother and flatter. In each of the profiles, an 
inilexion point develops. The slope, azi fi;O is also seen 
to decrease at 2” and the inflexion point moves away 
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from the top line of s~rn~t~ as the diameter ratio 
increases, and the profile levels off earlier midway 
between the top and the bottom of the inner wall. 
Thus, the inner wall temperature is seen to be strongly 
dependent on diameter ratio. As diameter ratios are 
further increased, the temperatures are expected to be 
nearly uniform on the inner wall as in isothermal 
heating. Thus, the heat transfer rates will be nearly 
the same for both isothermal and uniform heat flux 
boundary conditions at high diameter ratios for a 
given Rayleigh number. 

The ratio of the maximum to the mean tem- 
peratures on the inner wall given in Table 2 confirms 
the arguments given above. As pointed out earlier, the 
mean temperature approaches the maximum value as 
the diameter ratio increases ; however, this approach 
is faster for lower Rayleigh numbers. That is, when 
the diameter ratio is large for low Rayleigh numbers, 
due to low velocities, the temperature on a large por- 
tion of the inner wall remains constant. For all diam- 
eter ratios, the maximum temperature on the inner 
wall stays below twice its mean temperature. 

4.2. Heat transfer rem&s 
If a mean temperature Tm,i is determined on the 

inner wall, the heat transfer coefficient is given by 

&‘-,.i - I-0) = 4 (12) 

from which the average Nusselt number can be 
defined as 

Table 2. Normalized maximum temperature 

RfZZ 
-~ 

&I4 IO4 5x104 IO5 5x105 

5.0 1.392 1.494 1.540 1.652 
2.6 %I.% 1.395 1.500 1.552 1.681 
I.5 G 1.628 I.658 I.671 - 
1.33 , 1.664 1.697 1.711 1.744 
1.20 1.805 1.858 1.881 

0.8 

0.7 

=I 
0.6 

where z, is the non-dimensionalized mean tempera- 
ture. The heat transfer results are presented in terms 
of NuL vs Raf in Fig. 3 for various diameter ratios. 
At very low Rayleigh numbers, the heat transfer rate 
is due to conduction and the numerical results are 
predicted to within 1% of the theoretical values of the 
conduction heat transfer rate 

K--l 
Nu, = ~ 

lnK-‘ 

As the diameter ratio increases from 1.2 to 10, the 
flow regime is seen to extend. Beyond the conduction 
regime, as the Rayleigh number increases, the heat 
transfer rate increases for all diameter ratios. This 
is consistent with the non-dimensional inner mean 
temperature becoming smaller as the diameter ratio 
gets larger, as discussed in the previous section, Since 
z is defined as 7 = (T- Z”,,)/(qL/k), as the heat flux is 
increased, Rayleigh number and dimensional tem- 
perature increase; however, the rate of increase of heat 
flux is larger than that of the dimensional temperature 
that r decreases with Rayleigh number. The rate of 
increase of NuL with Rar depends slightly on the diam- 
eter ratio. At high diameter ratios, the rate of increase 
is slower. Since the curves beyond the pseudo- 
conduction region are straight lines on log-log coor- 
dinates, Nu,, for each diameter ratio may be rep- 
resented by an equation of the form NuL = CRal”. 
The values of C and n are dependent on the diameter 
ratio and are given in Table 3. As the diameter ratio 
is increased, the heat transfer rate must approach that 
for a horizontal cylinder in an infinite atmosphere. 
Based on the experimental data of Dyer [20] on lami- 
nar free convection on a cylinder with uniform heat 
flux in an infinite atmosphere, Morgan 1191 recom- 
mended a correlation 

Nu = 0 55Ra”~233 4 . 4 . w 

Although the range of Rayleigh numbers used by 

I I , I I 6 I I 

0 
I 

20 40 60 80 100 I20 140 160 180 

e 

FIG. 2. Local temperature distribution on the inner cylinder for Rat = I x IO’along the tangential direction. 
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Dyer [20] was beyond the range presented in this 

paper, the extension of the present numerical results 
for ti = 10 predicted the heat transfer rate within 8% 
of Morgan’s [19] correlation at Ru,, ~2r 2 x IO’. Thus, 
beyond K = 10, the single cylinder results may he used 
to predict the heat transfer rate reasonably weil. This 
fact is also substantiated by the plot of Nu, vs K in 
Fig. 4. Two observations can be made here. One is 
that for different RuT, the curves arc not linear. and 
hence any kind of heat transfer correlation cannot 
include a constant exponent of diameter ratio : rather. 
the exponent of Ra: should bc a function 01‘ K. 
Secondly, the heat transfer rate reaches an asymptotic 
value beyond a certain diameter ratio. At RL$ = IO”, 
the curves appear to become flatter carlicr. Such a 
trend is also seen in Fig. 3 where Nu, vs RN: curves 
come closer together for different K’S at high NaT. It 
seems reasonable to conclude that for K = 15, the 
annulus results may be rcplaccd by single cylinder 
results without loss of accuracy. 

The local heat flux on the cold wall is given by 

This dimensionless heat flux on the outer cylinder is 
given for Raf = 10’ and 5 x 10’ in Fig. 5. A high 
percentage of heat is rejected at the top of the outer 
cylinder. As the radius ratio is decreased for the same 
RUT, the percentage of heat rejected close to the top 
line of symmetry increases. The local heat flux is also 
seen to increase with Rayleigh number. 

In order to egectiveiy compare the heat transfer 
results of constant heat flux and isothermal boundary 

conditions. realizing that the two cases are distinct. 
one could speak in terms of similar conditions (same 
Ro. K, etc.) if 

T, - 7;, = r ,,,,, - ‘1:) (17) 

where (r, - T,,) is the applied tempcraturc dil-fcrencc 
for the isothermal cast and T,,,, is the mean tem- 
perature on the inner wall in the uniform heat flux 
case. The Rayieigh number. /?a,,, for the above con.- 
dition may be easily derived to yield 

It must be emphasized that such a comparison is pos- 
sible only if the temperature difference and hence the 
Rayleigh number in both cases are identical. Some 
interesting results emerge in the heat transfer rate fol 
both cases as shown in Fig. 6. The Nusselt numbers 
are equal in both cases in the conduction Row regime. 
However, it is also seen that the flow regime gets 
slightly extended for alt the diameter raGos in the heat 
flux case. Beyond the pseudo-conduction region. an 
increase in Rcr,, increases the heat transfer rates for 
both types of heating, but the rate of increase is larger 
for the constant heat flux case. This is not surprising 
since the temperature gradient was already seen 10 he 
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Fro. 5. Local heat &IX on the outer cylinder, 

FIG. 6. Comparison of heat transfer results for heat flux boundary condition (-----) and isothermal 
boundary condition (-), 

much higher for the constant heat flux boundary con- 
dition compared to isothermal heating. This behavior 
is prominent for small K’S for example, for zc = 1.2, 
Nu, at IO4 is 19% larger for the constant heat Aux 
case, but increases to 30% compared to the isothennat 
case at 3 x 10’. At Ru, = 104, the percentage difference 
in heat transfer drops from 19 to 10% when K is 
increased from 1.2 to 5. However, the increase in 
heat transfer rate for the constant heat flux condition 
diminishes as the diameter ratio increases until K = 10 
is reached when both types of heating show minor 
changes in heat transfer results. 

For K 3 10, the heat transfer rates will be the same 
for both types of heating, given by a dngle equation 
N& = CR@, provided AT = T,,i - T,. Morgan’s 
[19] correlations of ex~~rnent~ data for a horizontal 
cylinder in an infinite medium for the two types of 
heating based on the consideration AT = Tms - T, in 
the range IO' < Raa, -c 4 x lo6 are 

AkDi = 0.55Rap3’ (heat flux) (1% 

NuDi = 0.48Ra~~~’ (isotherm) . U9b) 

The present numerical results for it = IO in the range 
covering the onset of motion to nearly Ra, N 2 x IO4 
yield 

Nu, = 0.622Ra$228. (20) 

Although constant C has a different value compared 
to the correlation given in equations (19), the 
exponent ‘n’ attains a nearly constant value through- 
out the famiuar regime for both constant heat flux 
and isothermal boundary conditions for high diam- 
eter ratios. At I&++ = 20000, the n~e~cal results 
predict the results given by equations (19) within 8%. 
The percentage difference decreases at high I&z, (IO’- 
4 x 106) at which Dyer’s [20] data were obtained. 
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FIG. 7. Isotherms (left) and velocity vectors (right) for K = 2.6 : (a) Ra: = 6 x 104; (b) RUT = 1 x 10’ 

4.4. Flow,field 
Isotherms and velocity vectors are presented in Fig. 

7(a) for a representative case of K = 2.6 and 
Ra: = 6 x 10“. For clarity, a few points are omitted in 
the computational domain for plotting purposes. The 
bottom region is essentially stagnant with low vel- 
ocities with the isotherms forming concentric circular 
patterns. However, in the top half of the cylinder, the 
fluid is recirculated making the outer layer warmer. 
The transport of hot fluid to the outer cylinder is also 
depicted by the isotherms. As the Rayleigh number 
increases to 1 x 10’ (Fig. 7(b)), the velocities increase, 
the center of rotation moves toward the line of vertical 
symmetry but stays in the middle of the gap width. The 
isotherms exhibit an inversion, and the streamlines are 
crescent-shaped eddies as observed by Bishop and 
Carley [ 11. A clearer picture of the flow emerges as the 
dimensionless tangential velocity is plotted across the 
annular width in Fig. 8 for K = 2.6 and different Ray- 
leigh numbers. For low Rat consistent with the low 
temperature gradient near the inner cylinder, the vel- 
ocity values are lower. As Rat increases from 6 x lo4 
to 3 x 105, the velocity gradient increases near the 
inner and outer cylinders, but the upward and down- 
ward flow are still balanced equally about the center 
of the gap width. As Ra,* is further increased to 7 x 105, 
at (Y-r,)/(r,-_yi) > 0.1, thevelocity tends to be small, 

and is predominantly upward until (r-ri)/ 
(v,,-ri) = 0.7. This is because the center of rotation 
has moved higher up towards the vertical line of sym- 
metry. The flow behavior at RaT = 3 x lo6 will be 
discussed later. 

The tangential velocity profiles for the heat flux and 
isothermal heating in Figs. 9(a) and (b) at 
Ra, = 5 x lo4 once again reveal the large velocity 
gradient close to the inner wall for the heat flux case 
due to the large temperature gradient. In both cases, 
the velocity attains a peak at 45”, and the profiles are 
similar at all angles, in the upper half of the annulus, 
in general. Although it is not appropriate to compare 
the actual velocities for the two cases at different pos- 
itions in the annular width, the ratio of velocities may 

be considered for comparison of the two cases. At 
135”, the peak velocity is only half the peak velocity 
at 90” for isothermal heating whereas it is two-thirds 
for the heat flux case. The profile at 135” also seems 
to be more symmetric about the center of the gap 
width for the present case. Between 0.2 < (r-r,), 
(r,-r,) < 0.8, the velocities at all angles are nearly 
the same in Fig. 9(a). Thus, the flow is seen to be more 
active in the bottom portion of the annulus for a 
uniform heat flux inner boundary for the same annu- 
lus conditions. 

It is confirmed by Bishop and Carley [l], Powe et 
al. [2, 61 that a secondary cell forms near the top of 
the annulus for small diameter ratios. Multiple cells 
were seen to occur for Q/L >, 8. In order to trace 
secondary cells in the present numerical work, a finer 

grid of 28 x 51 (r x 0) was chosen. The appearance of 
the secondary cell for K = 1.2 at Raz = 5 x 10’ was 
monitored by a change in value of the stream function. 
This value was too small and could appear only as a 
faint line as shown by Powe et al. [6] in their numerical 
study. The objective of this work is not to predict 
the transition segments for the heat flux boundary 
condition, and such an experiment was undertaken 
mainly to validate our numerical results. As Torrance 
[23] pointed out, the truncation error inherent in any 
numerical study would lead to spurious instabilities. 
However, in light of the excellent agreement of our 
numerical results [9] with the experimental data of ref. 
[lo], no spurious instability is seen to have contributed 
to any erroneous flow pattern. A series of vector plots 
are presented in Figs. IO(a)-(f) for Rayleigh numbers 
near but slightly below transition and K = 1.5, 2.6 
and 5.0. 

The Rayleigh numbers above which the numerical 
results failed to converge are given in Table 4. Since 
the equations are written for a two-dimensional steady 
flow with a vertical line of symmetry, it is very difficult 
to judge whether the flow will become oscillatory or 
three-dimensional beyond a certain Rayleigh number 
given in Table 4 for a given inverse gap width, Di/L. 
However, some interesting flow patterns are obtained. 
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FIG. 8. Non-dimensional tangential velocity profiles for K = 2.6 at 0 = 90”. RaZ are marked on the profiles. 

some of which were seen in photographic studies 
earlier [l] for isothermal cylinders. 

The crescent-shaped eddy pattern is seen in Fig. 
10(a) just below transition for Di/L = 4. It stays cres- 
cent throughout the steady flow regime and the center 
of rotation does not move up high enough in order to 
provide room for secondary cells that probably will 
emerge at higher Rar. The flow behaved similarly for 
all rc ,< 1.8. Powe et al. [6] in their numerical work 
concentrated on multiple cells and hence they limited 
their study to K < 1.72. Above this diameter ratio, as 
shown in Fig. 10(d), for K = 2.6, the center of rotation 
moves closer to the line of symmetry. Nearly two- 
thirds of the annular width is occupied by slow upflow 
and the flow is strong and downward close to the 
outer cylinder. As the Rayleigh number is increased 
from 5 x lo5 to 3 x 106, following Figs. 7(b), 10(c) 
and (d), the center of rotation approaches the outer 
cylinder while moving towards the line of symmetry. 
At Rat = 3 x lo6 (Fig. 10(d)), in the region around 
0 = 90”, the flow turns towards the inner cylinder, and 

Table 4. Critical Rayleigh number 

D,lQ DilL Wt 

5 0.5 1.3 x IO’ 
2.6 1.25 3x IO6 
1.5 4 3.1 x lo5 
1.33 6 5x lo5 
1.2 10 2x105 

t Rayleigh number beyond which the solution 
did not converge. 

the flow is upward and downward alternately along 
the radial line as seen in the tangential velocity plot 
of Fig. 8 for the same Rayleigh number. The effect of 
higher diameter ratio on the flow pattern is seen in 
Figs. 10(e) and (f). Once again, the center of rotation 
moves up and towards the outer cylinder as RaE is 
increased. But, the crescent-shaped eddy transforms 
into a clear kidney-shaped pattern in Fig. IO(d) for 
K = 2.6, as seen in the photographic studies of Bishop 
and Carley [l] between isothermal cylinders for 
IC = 3.67. Adjacent to the kidney-shaped eddy, the 
flow bends towards the inner cylinder before moving 
upward again as in K = 2.6. Comparing Figs. 10(d) 
and (f) at high Ra& there is a larger body of relatively 
stagnant fluid at the bottom of the annulus as K 
increases from 2.6 to 5.0. 

5. CONCLUSIONS 

This paper reports the numerical results obtained 
for a natural convective flow of gases between two 
horizontal cylinders, with the inner wall maintained 
at constant heat flux and an isothermal outer wall. 
The heat transfer and fluid flow results are presented 
for diameter ratios of 1.2, 1.33, 1.5, 2.6, 5.0 and 10 
and 100 < RaZ d 107. Wherever possible, results were 
compared with the results obtained for flow between 
two isothermal cylinders, when the temperature 
differences in both cases were the same. Based on the 
heat transfer, temperature and velocity profiles and 
velocity vector plots, the following conclusions may 
be made. 
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(,1) The constant heat flux on the inner cylinder 
resufts in a lower effective sink temperature compared 
with is&XXmaI heating. 

(2) The inner w&I t~m~rat~r~ is strongly depea- 
dent on the diameter ratio. The ratio of peak tent- 
peraturc to the mean temperature increases with Ray- 
leigh number hut has the opposite e&ct on diamct~r 
ratio. Also, as the diameter ratio increases, For the 
same Ray&@ number, the eRsctitt: sink tem~ra~~r~ 
&V23mi?s smalfer. 

(3) In the convection-dominated region? Nlr, c;1n 
be represented by an equation of rlx form lVt~l = 
C&.z~“. The values of C and N are the dianletel 
ratio. 

(4) For a diameter ratio of $0, the heft transfer 
r~su~ts~r~d~cted Morgan’s f19j co~~~atjo~ for a single 
cylinder with a. uniform heat Aux boundary con~tjo~~ 
within 8% for RaDi = 2 x 1 O”, ShowiRg that for large 
diameter ratios, free cylinder heat transfer coef&cients 
are approached mo~otonjc~ly~ 
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(5) Heat transfer rate is higher for the constant 
heat flux case than isothermal heating when the tem- 
perature difference is the same in both cases. The 
percentage difference in heat transfer diminishes with 
increase in diameter ratio. 

(6) Most of the heat is rejected within 20” from the 
top line of symmetry on the outer cgriinder for small 
diameter ratios. The heat rejection becomes more uni- 
form around the outer cylinder as the diameter ratio 
increases. 

(7) A crescent-shaped eddy dominates the flow in 

the case of small diameter ratios. For a diameter ratio 
of 5, a kidney-shaped pattern forms as observed 
between isothermal cylinders by Bishop and Carley 
[I] who performed a Raw visualization study between 
isothermal cylinders at K = 3.67. The flow is faster 
near the outer cylinder and more active in the bottom 
portion of the am&us compared to isothermal heat- 
ing at the same Rayleigh number. At high Rayleigh 
numbers2 as the diameter ratio is increased, there is 
more stagnant fluid at the bottom with the inception 
of a kidney-shaped flow pattern. 
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ETUDE DE LA CONVECTION NATURELLE DANS UN ESPACE ANNULAIRE 
HORIZONTAL 

R&urn&On etudie numkriquement la convection naturelle des gaz dans un espace annulaire horizontal 
dont le cylindre intirieur est chauffb par un flux constant et le cylindre externe refroidi isothermiquement. 
On prksente des r&&tats d&ail& sur la temperature, la vitesse et le transfert de chaleur, pour un large 
domaine du nombre de Rayleigh allant depuis la conduction jusqu’au r&me de convection et pour des 
rapports de diam&e de 1,2 & IO. Un tourbillon de forme croissante domine pour un petit rapport de 
diametre, et une configuration d’&coulement en rognon apparait pour un grand rapport, comme observe? 
par des chercheurs anthrieurs dam Ieurs travaux de visnalisation, La temp~tatnre de la paroi intCrieure est 
une fonction du rapport de diametre et du nombre de Rayleigh. Une croissance du nombre de Rayleigh 
bask sur la m&me diffkrence de temperature, pour la condition de flux de chaleur constant ou de tempkrature 
uniforme sur le cylindre intkrieur, augmente le transfert thermique; &anmoins, l’accroissement est plus 
grand pour le cas du flux de chaleur constant. Aux grands rapports de diamktre (K > lo), les taux de 
transfert thermique sont les m@mes pour les deux types de chauffage et un cylindre unique dans une 

atmosphbre infinie donne $ peu pr&s les mimes ri.sultats. 

UNTERSUCHUNG DER NATijRLICHEN KONVEKTION IN WAAGERECHTEN 
RINGRAUMEN 

Zusammenfassung-Die natiirliche Konvektion von Gasen in einem waagerechten Ringraum, bei dem der 
inner, Zylinder mit einem konstanten WIrmestrom beheizt und der %uBere Zylinder bei konstanter 
Temperatur gekiihlt wird, wird numerisch untersucht. Detaillierte Ergebnisse beziiglich Temperatur, Ge- 
schwindigkeit und W~rme~bergang werden iiber einen weiten Bcreich der Rayleigh-Zahl dargestellt, vom 
Gebiet der reinen W~~eleitung bis hin zur station~ren Konvektionsstr~mung. Das Durchmesserver~~ltnis 
betrggt zwischen 1,2 und 10. Bei kleinen Durchmesse~erh~ltnissen treten vor allem halbmondf~~ig~ 
Wirbel auf. wihrend bei grol3en Durchmesserverh~ltnissen nierenf~rmige Str~mungsfo~en auftreten, wie 
sie such van anderen Autoren durch Sichtbarmachen der StrBmung beobachtet wurden. Die Temperatur 
des Innenrohres hlngt vom Durchmesserverhaltnis und von der Rayleigh-Zahl ab. Eine Erhiihung der 
Rayleigh-Zahl, die auf dieselbe Temperaturdifferenz bezogen ist, erhiiht den WIrmeiibergang sowohl fiir 
die innere Randbedingung konstanter Temperatur als such bei konstanter Wiirmestromdichte, bei letzterem 
Fall ist die Verbesserung allerdings griiBer. Bei grBl3eren DurchmesserverhPltnissen (K > IO) ist der 
Warmeiibergang bei beiden Randbedingungcn gleich und erreicht fast den Wert eines einzelnen 

Zylinders im unendlichen Raum. 

MCCJIEflOBAHME ECTECTBEHHOn KOHBEKL@Gi B I-OPW30HTAJIbHbIX 
KOJIbQEBbIX KAHAJIAX 

A~OT~~s-~nCneHHO M3yraeTclr eCT.?CTBeHHa~ KOHBeXnNII ra308 B rOpH3OHTanbHbiX KOJlbUeBblX 

KaB&?aX, ~~y~pemia& n~=~n~p KoTopbIX Harpesae-rcr ~OCTO~HH~M TennoBbtM ~OTOX~M, a eeemswii- 
~3o~e~~~~~~~ OXJIa~W?TCr. ~~A~aB~qC~bi nOApo6Hbl~ AaHHbre 0 TeMnepaT~e,CKOp~T~ il TeIIJiO- 

nepeHoce ~na ui~po~ofo Aaanasoaa wcen P3ner, OXBL-iTblBaEOWeTO pe)KBMM yCTO&iBbIX 

KOHnyKT~BH~~x N KOWBeKTIIBHbIXTeseHeB,~ OTHOUICHIIIl AKaMeTpOB OT 1,2AO l&no AaHHblMBH3ya,U+ 

3anmi TeSeHsis, ,IO,IyqeHHb,M paHee ApyrHMU aBTOpaMU, B ciryvae Manbrx 3Haqeiinji OTHOUICHiiX fiura- 

MeTpOB, npeo6nanaeT CepnOBaAHbiti BAXpb, B TO BpeMI KIK UpMl 6onbmex 3HaSeHliRX B03HIIKiWT 

KapTeHa Teyen&ia, HanoMMHammaa no +opMe +aconb. BHYT~~HHRR TeMnepaTypa CTeHKH RBJIWTCR 

+yHKUAefi OTHOUleHHII nsaMeTpoB II qHcna Psnea. Ysenavemie gncna Psnen, ocnoBaHHoe Ha OnHOG n 
~oti Xe pa3nocTu XMnepa’rypann rpaHWfHOr0 yCnOBHK Qnfl BHyT~HHefiCTeHKIlCnOCTORHHbIMTenAO- 

BbIM nOTOKOM Hnn UOCTORHHOti TeMnepaTypOti, HHTeHC@HnHpyeT TennOnepeHOC, npllqeM RnTeHcn+= 
Kanmi cunbnee nprr ~OCTOI~HHOM TennoBoM noTOKe. npa 6onbnmx OTHOUIeHNIlX maMeTpOB (K t lo), 

TennOo6MeH OAHHBKOB AJIlt odorix TIlllOB HarpeBa, a Cllyqaii eABHii'IHOl-0 LWIEiHApa B 6ecKoHeqHoif 
cpeae AaeTnoqTwTaKSiexepe3yJIbTaTbI. 


